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The combination of tandem mass spectrometry and se-
quence database searching is the method of choice for
the identification of peptides and the mapping of pro-
teomes. Over the last several years, the volume of data
generated in proteomic studies has increased dramati-
cally, which challenges the computational approaches
previously developed for these data. Furthermore, a mul-
titude of search engines have been developed that iden-
tify different, overlapping subsets of the sample peptides
from a particular set of tandem mass spectrometry spec-
tra. We present iProphet, the new addition to the widely
used open-source suite of proteomic data analysis tools
Trans-Proteomics Pipeline. Applied in tandem with
PeptideProphet, it provides more accurate representation
of the multilevel nature of shotgun proteomic data.
iProphet combines the evidence from multiple identifica-
tions of the same peptide sequences across different
spectra, experiments, precursor ion charge states, and
modified states. It also allows accurate and effective in-
tegration of the results from multiple database search
engines applied to the same data. The use of iProphet in
the Trans-Proteomics Pipeline increases the number of
correctly identified peptides at a constant false discovery
rate as compared with both PeptideProphet and another
state-of-the-art tool Percolator. As the main outcome,
iProphet permits the calculation of accurate posterior
probabilities and false discovery rate estimates at the
level of sequence identical peptide identifications, which

in turn leads to more accurate probability estimates at the
protein level. Fully integrated with the Trans-Proteomics
Pipeline , it supports all commonly used MS instruments,
search engines, and computer platforms. The perform-
ance of iProphet is demonstrated on two publicly avail-
able data sets: data from a human whole cell lysate pro-
teome profiling experiment representative of typical
proteomic data sets, and from a set of Streptococcus
pyogenes experiments more representative of organism-
specific composite data sets. Molecular & Cellular Pro-
teomics 10: 10.1074/mcp.M111.007690, 1–15, 2011.

A combination of protein digestion, liquid chromatography
and tandem mass spectrometry (LC-MS/MS)1, often referred
to as shotgun proteomics, has become a robust and powerful
proteomics technology. Protein samples are digested into
peptides, typically using trypsin. The resulting peptides are
then separated and subjected to mass spectrometric (MS)
analysis, whereby a subset of the available precursor ions are
sampled by the MS instrument, isolated and further frag-
mented in the gas phase to generate fragment ion spectra
(MS/MS spectra). From these spectra, the peptides and then
the proteins present in the sample and, in conjunction with
quantification strategies, their relative or absolute quantities
can be determined (1).

The volume of data generated in proteomic experiments
has been growing steadily over the past decade. This has
been aided by the rapid progress made in several facets of
proteomics technology, including improved sample prepara-
tion and labeling techniques and faster, more sensitive mass
spectrometers (2). The resulting explosion in the number and
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size of data sets has necessitated computational tools that
can analyze data from diverse types of experiments and in-
struments in a robust, consistent, and automated manner (3).
In particular, the need to distinguish between true and false
peptide to spectrum matches (PSMs) produced by automated
database search engines became an essential task for the
meaningful comparison of proteomic data sets. In early work
this was accomplished by applying rigid score cutoffs, but
this soon proved problematic because of unknown false dis-
covery rates (FDR) in the filtered data sets. Without a uni-
formly applied confidence measure it was difficult and unre-
liable to combine and compare data sets (4, 5).

In recent years there has been substantial progress in de-
veloping bioinformatics and statistical tools in support of
shotgun proteomic data. This includes the development of
new and improved tandem MS (MS/MS) database search
algorithms, as well as statistical data methods for estimating
FDR and posterior peptide and protein probabilities (reviewed
in (2, 6)). There is also ongoing work on improving other
aspects of proteomic data analysis, including tools for isotope
label-based and label-free quantification, data management
systems, and data exchange mechanisms, as reviewed in (5,
7–9). One of our group’s contributions to these efforts was the
development of the computational tools PeptideProphet (10)
(analysis of MS/MS database search results) and Protein-
Prophet (11) (protein-level analysis), which allowed faster and
more transparent analysis of proteomic data. These tools
constitute the core elements of the widely used Trans-Pro-
teomic Pipeline (TPP) (12).

At the same time, the last few years witnessed a dramatic
increase in the speed of data acquisition. As a result, many
data sets are now collected in multiple replicates or involve
the generation of otherwise highly overlapping data sets. This
is the case in label-free quantitative measurements across
multiple samples,(13). MS-based reconstruction of protein
interaction networks,(14–16) or the comprehensive character-
ization of proteomes of model organisms such as Drosophila
(17), C. elegans (18), and S. cerevisiae (19) via extensive
fractionation of the proteome sample and the mass spectro-
metric measurement of each fraction. Although Peptide-
Prophet and ProteinProphet have been shown to provide
accurate estimates in the case of small to intermediate data
sets, several simplifying assumptions in these tools limit their
performance with increasing data set size (20). Furthermore,
there is a growing interest in the analysis of MS/MS data using
a combination of multiple search engines, with the intent to
maximize the number and confidence of peptide and protein
identifications. This approach has become computationally fea-
sible with the availability of faster computers, the prevalence of
computing clusters, and recent emergence of cloud computing.
However, combining the results of multiple searches presents
additional technical challenges, including the heterogeneity of
search engine scores, the propagation of errors, and informatics
challenge related to nonuniform data formats.

Here we present a computational method and software
tool, iProphet, designed to address these challenges. Al-
though the existing PeptideProphet/ProteinProphet workflow
considers only two levels of information, PSMs and protein
identifications, iProphet expands this modeling framework to
more accurately reflect the nature of shotgun proteomic data
by introducing additional levels such as peptide precursor
ions (defined as precursor identical PSMs) and unique peptide
sequences (defined as sequence identical PSMs). Peptide
assignments to MS/MS spectra from different database
search tools are naturally integrated within the same frame-
work. As the main outcome, iProphet permits the calculation
of more accurate posterior probabilities and FDR estimates at
the level of unique peptide sequences, where one probability
is used for all sequence identical PSMs observed, which is
important for obtaining more accurate FDR estimates at the
protein level. The semiparametric modeling approach of
PeptideProphet allows fitting the data without prior distribu-
tional assumptions, making the entire workflow (Peptide-
Prophet/iProphet/ProteinProphet) capable of handling a wide
variety of data from many different search engines. We dem-
onstrate the performance of iProphet on two publicly available
data sets: data from a human whole cell lysate proteome
profiling experiments representative of typical proteomic data
sets, and from a set of Streptococcus pyogenes experiments
more representative of organism-specific composite data
sets.

MATERIALS AND METHODS

Experimental Data Sets—Two publicly available data sets were
used in this work. The first was taken from a study on Human Jurkat
A3 T leukemic cells(21) (referred to as human data set in the main
text). The raw MS data (RAW files) were obtained from the Tranche
(22) data exchange system (hash key provided in supplemental infor-
mation for the original manuscript). Briefly, the cells were lysed, the
lysate was separated using one dimensional SDS-PAGE, sections of
gel were digested with trypsin, and analyzed using a linear ion trap
mass spectrometer (LTQ, Thermo-Fisher). In this work, we use a
single complete replicate of the whole cell lysate experiment (replicate
1; 19 gel bands). It comprises a set of 19 MS files containing 161,425
MS/MS spectra in total.

The second data set is a set of five samples from a Streptococcus
pyogenes study (23) (referred to as S. pyogenes data set in the text).
The data files are available in the PeptideAtlas raw data repositories
(http://www.peptideatlas.org/repository/) as accessions PAe000283 -
PAe000287. This data set was divided into five experiments compris-
ing a total of 64 LC-MS/MS runs and 212,880 MS/MS spectra. One of
the experiments was from peptide samples fractionated by Free-Flow
Electrophoresis (FFE) (Weber Inc., now BD Diagnostics) and analyzed
on a hybrid LTQ-FT-ICR (Thermo-Fischer) instrument. One of the
experiments was from FFE fractionated samples analyzed on an LTQ
instrument. One of the experiments was from peptide samples frac-
tionated by off-gel electrophoresis (OGE) (GE Healthcare) and ana-
lyzed on an LTQ instrument. The final two experiments were from
samples separated by a strong cation exchange (SCX) and collected
on an LTQ instrument.

MS/MS Database Search and PeptideProphet Analysis—All raw
MS data were converted to the mzXML file format (24) searched with
six search engines (see below), then processed with PeptideProphet,
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iProphet, and ProteinProphet, in that order. All mzXML files from the
human data set were processed together. In the S. pyogenes data
set, each of the five MS data subsets described above were pro-
cessed separately by PeptideProphet. The individual PeptideProphet
results were combined in ProteinProphet with or without using
iProphet as an intermediate step. The comparison with Percolator
was performed using the Human data set and the FFE-LTQ-FT subset
of the S. pyogenes data set.

The protein sequence database used to search MS/MS spectra
from the Human data set comprised of the human RefSeq protein
sequences downloaded on April 19, 2010. The protein sequence
database used to search the second data set included the S.
pyogenes protein sequences extracted from RefSeq (version
NC_002737) database and human IPI version 3.54 (the human protein
sequences were appended to account for a small degree of human
protein contamination observed in some of the S. pyogenes samples).
Decoy sequences were included in both databases by randomizing
the tryptic peptides of the target sequences. In each database, the
decoys were divided into two distinct sets, with one of the decoy sets
being used by PeptideProphet (required for semiparametric model-
ing, see below), and by extension, the iProphet model. The other
decoy set was used to independently validate the performance of the
computational tools. The same procedure was applied when running
and evaluating the performance of Percolator. The two sets of decoys
were created independently from each other by randomizing tryptic
peptide sequences. In each decoy set, it was enforced that any
identical peptides that originated from different forward proteins re-
sulted in identical shuffled peptides in the decoy protein sequences.
The order of the sequences in the final database files was then
randomized to remove any bias or tendency of search engines to
report equivalent hits based on their order in the database.

Six different search engines were used in this work: Mascot (25),
SEQUEST (26), X! Tandem (27) (with k-score plug-in(28)), Inspect (29),
MyriMatch (30), and OMSSA (31). A similar set of parameters was
applied for all search engines, which can be summarized as follows;
a precursor mass tolerance of � 3 Daltons, fixed mass modification
for iodoacetamide derivatives of cysteines (in the S. pyogenes data
set), variable mass modification for methionine oxidation, and allow-
ing partially tryptic peptides (except in Mascot, which performed
significantly slower on our single Mascot license computer when
allowing partially tryptic peptides). For an extended description of
search engine specific parameters see supplemental Table S1.

For all search engines, PeptideProphet was run on the data in the
semiparametric mode (32) specifying one set of the decoy sequences
to be used in modeling to fix the shape of the negative distribution.
The PeptideProphet accurate mass model (33) was used for the
LTQ-FT measurements and the regular mass model for the LTQ data.
The number of tolerable termini and mass models of PeptideProphet
were disabled for the Inspect searches. Inspect uses this information
in computing the score which resulted in a strong bias for peptides
having correct mass and number of tolerable termini. Therefore, using
these models in PeptideProphet was not statistically sound. The
PeptideProphet pI model(34) was applied to all OGE and FFE exper-
iments and the retention time model was applied to experiments
showing high quality chromatographic separation.

iProphet Models—The iProphet program implements five models,
in an iterative fashion, to refine an initial PeptideProphet analysis. The
probability adjustments are based on the number of sibling searches
(NSS), replicate spectra (NRS), sibling experiments (NSE), sibling ions
(NSI, i.e. differently charged peptide precursor ions), and sibling mod-
ifications (NSM).

Number of Sibling Searches, NSS—The NSS model rewards or
penalizes identifications based on the output of multiple search en-
gines (in pepXML format) for the same set of spectra. No assumptions

are made regarding the orthogonality of the search engines being
combined. For each spectrum, there are one or more probabilities
from the search engines used, as calculated by the individual
PeptideProphet analysis on each search result. The probabilities are
combined by summing the probabilities of PSMs that agree on the
peptide sequence and dividing this value by the number of other
searches performed on the spectrum. Thus, the range of possible
values for NSS is [0, 1]. The NSS statistic is calculated as follows:

NSSd �

�
�d��d�d�∧Pepd�Pepd��

P�Pepd��

�
�d��d�d��

1

Number of Replicate Spectra, NRS—The NRS statistic models the
intuition that in a typical data set, multiple high probability identifica-
tions of the same precursor ion should increase the confidence of that
precursor ion being correctly identified. On the other hand, repeated
observation of PSMs having low to intermediate probabilities and
corresponding to the same peptide ion suggests that all those PSMs
are false. As computed, NRS yields a positive value for precursor ions
that are commonly identified with probabilities above 0.5; NRS yields
a negative value for precursor ions that are commonly identified with
probabilities below 0.5; NRS is 0 for precursor ions that are identified
from one spectrum only. Thus, this method of computing NRS at-
tempts to preserve the probabilities of precursor ions identified only
once but with a high probability. Its influence is learned from each
data set itself, and thus will vary between data sets. The range of
possible values for NRS is enforced to [–15, 15]. The NRS statistic is
computed according to the following formula:

NRSi � �
�i��i�i�∧Pepi�Pepi��

�P�Pepi�� � 0.5�

Number of Sibling Experiments, NSE—NSE is a statistic that is
used to model multiple identifications of the same precursor ion
across different experiments under the assumption that precursor
ions that are observed in multiple experiments and matched to the
same peptide sequence are more likely to be correct. As computed,
NSE yields a positive value for precursor ions that are commonly
identified with probabilities above 0.5 across different experiments;
NSE yields a negative value for precursor ions that are commonly
identified with probabilities below 0.5 across different experiments;
NSE is 0 for precursor ions that are identified from one experiment
only. The range of possible values for NSE is enforced to [–15, 15].
The NSE statistic is computed by the following formula:

NSEx � �
� x��x�x�∧Pepx�Pepx��

�P�Pepx�� � 0.5�

Number of Sibling Ions, NSI—The NSI model rewards peptides that
are identified by precursors with different charges. The NSI statistic is
calculated as follows:

NSIz � �
� z��z�z��

P�Pepz��

Number of Sibling Modifications, NSM—The NSM model rewards
peptides that are identified with different mass modifications. The
NSM statistic is calculated as follows:

NSMm � �
�m��m�m��

P�Pepm��

Estimation of FDR—As described above, each sequence database
contained two sets of decoys. The first set of decoys was used at the
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modeling stage (in PeptideProphet and also in Percolator) and thus
was not available for independent decoy-based FDR estimation.
Thus, unless specified, any reference to decoys in the main text in the
context of FDR estimation and accuracy assessment refers to the
second set of decoys for each data set.

In each experiment, the lowest probability PSMs (probability less
than 0.002) were used to estimate the fraction r of decoy hits among
all matches expected to be false and therefore randomly distributed
through the database. This ratio (	38%) was then applied to compute
the decoy-based FDR estimate at a probability threshold �:

FDR� �
D� /r
N�

where N� and D� are the total number of matches and the number of
decoy matches, respectively, passing a minimum probability thresh-
old �, and D� /r is the decoy-estimated number of false matches. The
total number of correct matches above threshold � is estimated as

NC� � N� � D� /r

The same approach is used to compute decoy-based estimates at
the unique peptide sequence level and at the protein level. The same
analysis was applied based on Percolator’s results, except that q-val-
ues computed by that algorithm were used for sorting the peptide and
protein lists instead of the posterior probabilities.

The model-estimated (i.e. using computed posterior probabilities
and not decoy counts) FDR for a minimum probability threshold � is
computed as (10)

FDR�
mod �

�
�i,P�Pepi����

�1 � P�Pepi��

N�

The model-estimated number of correct matches above a minimum
probability threshold � is computed by the formula

NC�
mod � �

�i,P�Pepi����

P�Pepi�

These equations are modified accordingly to compute similar metrics
at the level of unique peptide sequences and proteins.

RESULTS

PeptideProphet and ProteinProphet—Before introducing
the extended modeling framework provided by iProphet, it is
informative to briefly summarize the conventional Peptide-
Prophet and ProteinProphet approach to the analysis of shot-
gun proteomic data. The existing strategy considers informa-
tion at two distinct levels: PSM (PeptideProphet) and protein
identification (ProteinProphet). PeptideProphet takes as input
all PSMs from the entire experiment (considering the top
scoring PSM for each experimental MS/MS spectrum only). It
then applies the expectation-maximization (EM) algorithm to
derive a mixture model of correct and incorrect PSMs from
the data using various sources of information (denoted here
as D). These include the primary information such as the
database search scores, but also auxiliary information based
on various properties of the assigned peptides (e.g. number of
missed cleavages, mass accuracy, etc.). PeptideProphet then
computes the posterior probability for each PSM, denoted as
P(Pep), using Bayes’ Law:

P�Pep� � P�
�D� �
P�D�
�P�
�

P�D�
�P�
� � P�D���P���

(Eq. 1)

where P(D�
) and P(D�–) are the probabilities of observing a
PSM having information D among correct and incorrect
PSMs, respectively, and P(
) and P(–) are prior probabilities
of a correct and incorrect PSM in the data set (i.e. the overall
proportions of correct and incorrect PSMs). The prior proba-
bilities and the parameters governing the P(D�
) and P(D�–)
distribution are learned from the data itself. Importantly, while
PeptideProphet considers each PSM in the context of the
whole population of correct and incorrect PSMs, it does not
take into account information about other PSMs in the data
set that identify the same peptide sequence. The main statis-
tical unit of PeptideProphet, therefore, is the posterior prob-
ability of PSM.

After computing PSM probabilities, the analysis continues
at the protein level. This task is carried out by ProteinProphet,
which takes as input the list of PSMs and computed posterior
probabilities (the output from PeptideProphet) and uses this
information to estimate the probability that a particular protein
is present in the sample. The protein probability P(Prot) is
computed as the probability that at least one PSM corre-
sponding to the protein is correct:

P�Prot� � 1 � �
i

�1 � P��Pepi�� (Eq. 2)

In computing protein probabilities using Eq. 2, PSMs cor-
responding to the same peptide ion are represented by a
single contribution having maximum probability. All remaining
PSMs, however, are considered as independent evidence for
their corresponding protein (index i in Eq. 2 labels distinct
peptide precursor ions). In other words, the model considers
related PSMs corresponding to the same unique peptide se-
quence but having different precursor ion charge state or
modification status on equal footing with PSMs correspond-
ing to completely different peptide sequences.

The protein-level model recognizes the nonrandom nature
of peptide to protein grouping, i.e. the fact that correct pep-
tides, more than the incorrect ones, tend to correspond to a
small number of proteins (each identified by multiple pep-
tides). It attempts to correct for this bias and prevent overes-
timation of protein level probabilities by adjusting the initial
probabilities computed by PeptideProphet, P(Pep), to ac-
count for the protein grouping information (the number of
sibling peptides, NSP), indicated as P’(Pep) in Eq. 2. Intui-
tively, ProteinProphet rewards peptide precursor ions that
have many sibling ions corresponding to the same protein,
and punishes those that have few (many of which are “single
hit” protein identifications).

Extended Multilevel Modeling in iProphet—iProphet ex-
tends the initial approach described above by introducing
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additional levels more accurately reflecting the nature of shot-
gun proteomic data: peptide precursor ions (LC-MS/MS run
specific as well as all runs combined), peptides (modification-
specific), and unique peptide sequence (see Fig. 1). The PSM
level and other levels of information within the multilevel
model are linked via the corresponding grouping variables.
For example, the existence of multiple PSMs corresponding
to the same peptide precursor ion is taken into account by
introducing a new variable, the number of replicate (or re-
peated) spectra (NRS), and using it in a manner similar to the
NSP adjustment in ProteinProphet. The iProphet framework
further extends it to include multiple search engines by intro-
ducing an additional level of information capturing the search
engine-specific PSM. Specifically, iProphet implements five
additional models to refine the initial PeptideProphet com-
puted probabilities. Each model uses an additional type of
information (Fig. 1) using the following grouping variable (see
Methods for detail):

(i) Number of Sibling Searches, NSS: The NSS model re-
wards or penalizes identifications based on the output of
multiple search engines for the same set of spectra.

(ii) Number of Replicate Spectra, NRS: The NRS statistic
models the intuition that in a typical data set, multiple high
probability identifications of the same precursor ion should
increase the confidence of that precursor ion being correctly
identified. On the other hand, repeated observation of PSMs
having low to intermediate probabilities and corresponding to
the same peptide ion suggests that all those PSMs are false.

(iii) Number of Sibling Experiments, NSE: The NSE statistic
is used to model multiple identifications of the same peptide
precursor ion across different “experiments” under the as-
sumption that precursor ions that are observed in multiple
experiments and matched to the same peptide sequence are
more likely to be correct. In this context, experiments can be
repeat analyses of the same sample, analyses of different
fractions of the same sample or different biological samples
from the same species. Sample origins play a significant role
as far as having certain peptides or proteins appear in only
some experiments. For instance, some samples may be en-
riched for particular proteins or be restricted to specific tis-
sues and would contain proteins unique to samples of that
type. It is up to the researcher to define reasonable boundar-
ies between experiments, by assigning different experiment
tags to each experiment being analyzed.

(iv) Number of Sibling Ions, NSI: The NSI model rewards
peptides that are identified by two or more peptide precursor
ions of different charge. This model is based on the empirical
observation that correct peptide matches are often identified
in more than one charge state, whereas incorrect identifica-
tions of the same peptide are less likely to be observed in
multiple charge states (with high scores).

(v) Number of Sibling Modifications, NSM: The NSM model
rewards peptides that are identified with different mass mod-
ifications. This model is based on the fact that incorrect

identifications matching the same peptide sequence, but with
two different mass modifications (with high scores in both
cases), are less likely to be observed. Mass modifications
could arise, e.g. from oxidation of methionine or by other
intended (e.g. SILAC or ICAT labeling(6)) or artifactual modi-
fications that are anticipated as variable modifications in
search engines.

Probability Calculation—Each of the models described
above is learned as a mixture of two distributions, represent-
ing the correct and incorrect PSMs. Starting initially with
PeptideProphet probabilities, iProphet applies the EM algo-
rithm to concurrently learn all of the new mixture models in an
iterative fashion. On the first iteration, initial PeptideProphet
probabilities (computed using Eq. 1) are used as an estimate
of correctness to compute the distributions among correct
and incorrect PSMs, for each of the new statistics being
modeled by iProphet. The adjusted probability of each PSM,
denoted here as Pr(Pep), is computed using Bayes Law:

Pr�Pep� �
P�G�
�P�Pep�

P�G�
�P�Pep� � P�G����1 � P�Pep��

(Eq. 3)

Where G � {NSS, NRS, NSE, NSI, NSM}, P(Pep) is the initial
PeptideProphet probability, and P(G�
) and P(G��) denote the
joint probability distributions among correct and incorrect
PSMs. Assuming conditional independence of these statistics,
the distribution P(G�
) is computed as the product of the indi-
vidual distributions, P(NSS�
)P(NRS�
)P(NSE�
)P(NSI�
)-
P(NSM�
), and similarly for P(G��). During subsequent itera-
tions, the algorithm recalculates the probability of each PSM
based on the initial PeptideProphet probability and the rewards
and penalties awarded by the mixture models of the iProphet
statistics determined by the ratio of the positive and negative
distributions, P(G�
)/P(G�-), learned in the previous iteration.
The individual distributions are estimated using the kernel-den-
sity estimation procedure (32). The algorithm stops when all
values have converged. Note that because all models are
learned concurrently the order in which the models are applied
does not affect the results.

Application of iProphet to the initial PeptideProphet results
produces adjusted PSM probabilities (Eq. 3). The main out-
come of iProphet is the identification probability at the unique
peptide sequence level, taken as the maximum probability of
all PSMs corresponding to that sequence. Hence, the input
into ProteinProphet is the set of unique peptide sequences
and their probabilities. ProteinProphet performs further ad-
justment of the peptide probabilities for the number of sibling
peptides, NSP (with the definition of NSP modified compared
with the conventional workflow to count unique peptide se-
quences). NSP adjusted probabilities are then used to calcu-
late the final protein probability as in Eq. 2. In the presence of
shared peptides (i.e. peptides whose sequence is present in
multiple entries in the protein sequence database), Pro-
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FIG. 1. Overview of shotgun proteomic data and the computational strategy. The protein sample is digested into peptides, with some
peptides present in the unmodified and a modified (e.g. oxidized methionine) forms. The peptide sample is separated using liquid chroma-
tography (LC) coupled online with a tandem mass spectrometer. The first stage of MS measures mass to charge ratios of peptide ions injected
in the instrument at any given time. A peptide can be ionized into multiple peptide precursor ions having different charge state (e.g. 2
 and
3
). Selected peptide ions are subjected to MS/MS sequencing (some multiple times). Each acquired MS/MS spectrum is assigned a best
matching peptide sequence using sequence database searching. When multiple search tools are applied in parallel (Search 1 and Search 2),
each spectrum produces multiple peptide to spectrum matches (search-specific PSM level), which could be the same or different peptides
summarized at the PSM level). Within the same LC-MS/MS run, the same peptide ion can be identified from multiple PSMs (run-specific
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teinProphet apportions such peptides across the correspond-
ing protein entries and performs protein inference as de-
scribed previously (11). The need to deal with shared peptides
concurrently with NSP adjustment explains why the adjust-
ment for NSP is still performed in ProteinProphet, i.e. not in
iProphet, even though it would be appealing to perform the
entire analysis, from PSM to protein level, within a single
model.

Analysis of iProphet Performance—The performance of
iProphet was first investigated using a human data set repre-
sentative of data sets generated in a typical experiment (see
Methods). The data set was searched with six different search
engines (SEQUEST, X! Tandem, MyriMatch, OMSSA, Inspect,
and Mascot), and the output from each search engine was
processed using PeptideProphet (see Methods). Protein-
Prophet was then applied to PeptideProphet results for each
search engine individually (producing search engine-specific

summaries), as well as to all search engines combined. The
analysis was repeated with an addition of iProphet applied
prior to ProteinProphet. The results were compared at three
levels (PSM, unique peptide sequence, and protein) in terms
of the ability of computed probabilities to separate between
correct and incorrect identifications (discriminating power), as
well as their accuracy.

The use of iProphet resulted in a gain of about 10–15%
correctly identified PSMs at an FDR of 1%, depending on the
search engine. The results of the analysis based on X! Tan-
dem search results are shown in Fig. 2A (see supple-
mental Figs. S1 for other search engines). The figure plots the
number of correct PSMs as a function of FDR, estimated with
the help of decoys (NC� versus FDR� , see Methods), in the
most relevant range of FDR values below 5%. Overall, the
most significant improvement (percent-wise) at the PSM level
was achieved for the search engines that, in this particular

peptide ion level). The experiment may consist of several LC-MS/MS analyses (Analysis 1 and 2), in which case the same peptide ion can be
identified in multiple runs (peptide ion level). Considering the modification status, the same peptide can be identified in multiple forms
(modification-specific peptide level), which are then further collapsed into a single identification at the unique peptide sequence level. Multiple
unique peptide sequences may correspond to the same protein (protein level). PeptideProphet calculates the posterior probability of a correct
PSM, individually for each search engine output. iProphet combines multiple lines of evidence and computes accurate probabilities at the level
of unique peptide sequences, assisted by the introduction of new grouping variables: NSS, NRS, NSE, NSI, and NSM. ProteinProphet
combines peptide probabilities to compute the protein probability (with an additional adjustment for NSP).

FIG. 2. Discriminating power of computed probabilities. A, The number of correct PSMs as a function of FDR obtained using iProphet
(solid blue line) and PeptideProphet (green dashes). Human data set, X! Tandem search. B, Same as (A), at the protein level, after application
of ProteinProphet. C, The number of correct PSMs as a function of FDR obtained using iProphet when analyzing individual search engine
results (six search engines listed in the box), and all search engines combined (solid blue curve). D, Same as (C), at the protein level, after
application of ProteinProphet.
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data set, had the worst performance (Inspect, Mascot). At the
protein level, the use of iProphet in the pipeline either im-
proved or did not significantly affect the results (see Fig. 2B
for X! Tandem, and supplemental Fig. S2 for other search
engines). As expected, combining all search engines with
iProphet and inclusion of the NSS model yielded an additional
improvement of 	4600 correctly identified PSMs (	15% gain)
over iProphet’s best single search engine performance
(SEQUEST) at an error rate of 1% (Fig. 2C). A substantial
improvement was also observed at the protein level (Fig. 2D).

Next, the accuracies of posterior probabilities were inves-
tigated by comparing the model-based FDR estimates with
the decoy-based estimates at the PSM, unique peptide
sequence, and protein levels. The FDR computed using
PeptideProphet and PeptideProphet/iProphet probabilities
(FDR�

mod see Methods) for a single search engine X! Tandem
are shown in Fig. 3A–C (see supplemental Figs. S3–S5 for
other search engines). At the PSM level, for which it was
designed, PeptideProphet produced highly accurate proba-
bility estimates, as indicated by a very close agreement be-

FIG. 3. Accuracy of probability-based FDR estimates. FDR estimated using probabilities computed by the iProphet model (solid blue line)
and by PeptideProphet (green dashes) plotted as a function of FDR estimated using decoys. A perfect agreement between the two methods
(probability-based and decoy-based) is indicated by a 45-degree dotted line. A, X! Tandem, PSM level. B, X! Tandem, unique peptide sequence
level. C, X! Tandem, protein level. D, All six search engines combined using iProphet with NSS model enabled (solid blue line), or simply by
selecting the identification having the highest PeptideProphet probability across the individual search results (“naïve combination”). FDR
estimated at the PSM level. E, All search engines combined using iProphet or using the naïve approach, unique peptide sequence level. F, All
search engines combined using iProphet or using the naïve approach, protein level (after application of ProteinProphet).
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tween the probability-based and decoy-based FDR estimates
(a perfect agreement is indicated by a 45-degree line). On the
other hand, the iProphet computed probabilities at the PSM
level tend to be conservative (i.e. lower than decoy predicted
probabilities). This is not the case, however, at the level of
unique peptide sequences and at the protein level, where the
FDR estimates based on PeptideProphet computed probabil-
ities become less accurate (Figs. 3B and 3C, and sup-
plemental Fig. S4 for other search engines). Simply taking the
maximum PeptideProphet probability among all PSMs iden-
tifying the same unique peptide sequence overestimates the
probability at that level, resulting in underestimated FDR. In
contrast, iProphet computes more accurate probabilities (as
indicated by good agreement between the decoy-based and
probability based FDR estimates, see Fig. 3B) at the unique
peptide sequence level because it takes into account all in-
formation that goes into the identification of a unique peptide
sequence. This trend continues at the protein level, as shown
in Fig. 3C (see also supplemental Fig. S5). In all cases, the
protein probabilities computed with the help of iProphet are
more accurate than the standard PeptideProphet/Protein-
Prophet probabilities.

Importantly, iProphet allows computing accurate probabil-
ities even when combining the results of multiple different
database search tools (Fig. 3D–3F). The naïve way of com-
bining the search results (i.e. taking the maximum probability
assignment for each MS/MS spectrum across all search tools)
generates, as expected,(35) a significant overestimation of the
probabilities as compared with decoy predictions, even at the
PSM level (Fig. 3D). In contrast, iProphet remains conserva-
tive at the PSM level even when multiple search engines are

combined, and the probabilities and FDR estimates remain
accurate at the unique peptide sequence level and the protein
level (Figs. 3E and 3F, respectively).

The same trends observed above for the human data set
are seen with the S. pyogenes data set. This multi-experiment
data set, representative of composite organism-specific data
sets, challenges the performance of the standard TPP pipe-
line and further highlights the utility of iProphet. On this data
set, the improvements in the number of correct PSMs at FDR
of 1% ranged from 10% to 30% (see supplemental
Figs. S6 and S7 for PSM and protein-level results, respec-
tively). Although the comparison of search engine perfor-
mances is not the focus of this paper, it is interesting to note
that the ranking of individual search engines (based on the
estimated number of correct PSM or protein identifications at
a fixed FDR) was different in this data set than in the human
data set (e.g. Inspect has performed substantially better).
Furthermore, there was a substantial variation in the ranking
across individual data sets generated on different instru-
ments. This indicates that it would be difficult to define an
optimal search engine or search strategy for the analysis of a
particular data set. Combining the results from all search
engines with iProphet and inclusion of the NSS model yielded
an additional improvement of 	11,000 correctly identified
PSMs (	20% gain) over iProphet’s best single search engine
performance (see supplemental Fig. S8). Importantly, the
probabilities computed when using iProphet in the pipeline
were again significantly more accurate than those produced
by the standards PeptideProphet/ProteinProphet workflow,
both for the individual search engine results (see sup-
plemental Figs. S9–S11 for PSM, unique peptide sequence,

FIG. 4. Contribution of different models in iProphet. A, The number of correct PSMs as a function of FDR obtained using PeptideProphet
(green dashes), iProphet (solid blue line), and using iProphet with only a single model enabled: NSM, NRS, NSE, or NSI. B, The distributions
of the number of sibling ions, NSI, statistics among incorrect (red) and correct (blue) identifications. The shaded areas represent the actual
distributions observed, P(NSI��) and P(NSI�
), labeled as negative (N) and positive (P), respectively. The red and blue solid lines show the
iProphet modeled distributions. The solid black curve represents the natural log of the ratio P(NSI�
)/P(NSI��). When the ratio of the
distributions is above 1 (0 on the log scale, indicated by the dotted horizontal line), the model boosts the probability of a PSMs having NSI value
in that range, and reduces the probability in the range of NSI values where the ratio drops below 1. S. pyogenes data set, SEQUEST search.
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and protein levels, respectively), and for all search engines
combined (supplemental Fig. S12). Overall, the analysis pre-
sented above for both data sets demonstrates that the use of
iProphet in the postprocessing analysis improves the number
of correct results at a given FDR. Even more importantly, it
improves the accuracy of the reported probabilities.

To investigate the contribution of individual iProphet mod-
els to the overall improvement in performance at the PSM
level, iProphet was applied to the S. pyogenes data set
searched with X! Tandem. When running iProphet, only one of
iProphet’s NSE, NSI, NSM, and NRS models was enabled at
a time (NSS model is not applicable when using a single
search engine). Fig. 5A shows an increase in the number of
correct PSMs provided by each separate model in iProphet,
with respect to the initial PeptideProphet analysis. The results
of running iProphet implementing all applicable iProphet mod-
els are shown for the reference as well. In this data set, the
number of sibling ions (NSI) model made the largest contri-
bution. The NSI distributions among correct and incorrect
PSMs learned by iProphet in this data set are shown in Fig.
5B. There is a substantial difference between correct and
incorrect PSMs in terms of their NSI properties, with correct
PSMs having on average higher NSI values (on the NSI scale
from 0 to 2, see Methods). In other words, a peptide identifi-
cation based on an MS/MS spectrum acquired on, e.g. a 2


charged peptide precursor ion is more likely to be correct if
the same peptide was also identified with high probability
from a 3
 charge state MS/MS spectrum (NSI � 1; natural log
of P(NSI � 1�
)/P(NSI � 1�–) 	 2), and even more so if it is
also identified from a 4
 MS/MS spectrum (NSI � 2; ln-
(P(NSI � 2�
)/P(NSI � 2�–)) 	 5). Also note that, as described
above, the identifications of peptides from precursor ions of
different charge state are no longer treated as independent
events (unlike the conventional PeptideProphet/Protein-
Prophet workflow). Instead, after rewarding (penalizing) PSMs
having high (low) NSI values, and similarly with other vari-
ables, all PSMs corresponding to the same unique peptide
sequence make a single contribution toward the protein prob-
ability (Eq. 2). As a result, application of Eq. 2 leads to more
accurate protein probabilities.

Fig. 6 shows the distributions of NSE, NSI, NSM, NRS,
and NSS variables learned by iProphet in the S. pyogenes
data set, all search engines combined. It shows that the
NSS model, when applicable, is also highly discriminative. It
should also be noted that the importance of different mod-
els in iProphet varies depending, among other factors, on
the experimental protocols used to generate the data. For
example, the NSM model becomes a highly discriminating
model in quantitative experiments based on stable isotopic
labeling of peptides or proteins, such as SILAC or ICAT
experiments (see supplemental Fig. S13 for an example of
the NSM distributions in a SILAC data set). In such exper-
iments, peptides observed in multiple modified forms (e.g.
light and heavy SILAC-labeled peptides) receive a signifi-

cant probability reward if both forms are identified with high
scores.

Comparison to Percolator—The performance of Peptide-
Prophet and iProphet was compared with that of Percola-
tor(36) (version 1.14b), employed here as a state-of-the-art
benchmark. Percolator employs a semisupervised machine
learning approach to differentiate between correct and decoy
PSMs. For a discussion on the differences and similarities
between PeptideProphet and Percolator see (37, 38). Of the
six search engines used in this work, the Percolator software
was only able to process SEQUEST search results.

Combining data from all six search engines with iProphet
showed a clear improvement over SEQUEST/Percolator in
both data sets (see supplemental Fig. S14). To perform a
more direct comparison, PeptideProphet, PeptideProphet/
iProphet, and Percolator were run on SEQUEST search re-
sults only. On the Human data set (Fig. 6A), Percolator slightly
outperformed PeptideProphet. The performance of iProphet
and Percolator was essentially equivalent in the most relevant
range of low FDR values (below 5%). Percolator slightly out-
performed iProphet at higher error rates (see Fig. 6A inset).
This can be explained by the fact that Percolator is able to
consider non-top-hit matches for each MS/MS spectrum,
whereas PeptideProphet and iProphet only consider the top
hit. The option of using top ten best scoring peptides per
MS/MS spectrum within the PeptideProphet framework was
previously investigated as well,(38) and demonstrated a
	5–10% improvement in number of correct PSMs in the high
FDR region. This option is being considered for implementa-
tion in the TPP. However, it is not expected to significantly
increase the number of identifications at the unique peptide or
protein levels.

The analysis was repeated using the LTQ-FT subset of the
S. pyogenes data set (Fig. 6B). In this case, PeptideProphet
was equivalent or even slightly better than Percolator in low FDR
range. This is likely because of the ability of PeptideProphet to
effectively use high mass accuracy of the MS measurement on
this type of instrument in the model. As a result, iProphet out-
performed both Percolator and PeptideProphet in that FDR
range. As in the Human data set, Percolator was able to identify
	5% more PSMs in higher FDR range (see Fig. 6B, inset) by
going beyond the top peptide assignment per spectrum.

Software Implementation of iProphet—iProphet has been
conceived and implemented as an integral part of the TPP. A
tutorial describing how to use the TPP has been published
(12) and an online version of the tutorial is available at
http://tools.proteomecenter.org/wiki/index.php?title � TPP_
Demo2009. The workflow applies PeptideProphet to model
each search of each data set (see Fig. 7). iProphet then takes
as input one or more pepXML files that have been processed
with PeptideProphet and thus contain PeptideProphet prob-
abilities. iProphet can be applied to PeptideProphet results
separately for each search engine, or used to combine the
results of multiple searches and multiple experiments.
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The output of iProphet is another pepXML file that contains
the top scoring entry for each spectrum in the input file;
iProphet writes the probabilities it computes to the resulting

pepXML file. The statistics outlined above (NSS, NRS, NSE,
NSI, and NSM) for each PSM are reported in the output file
as well and also the global distributions learned for the

FIG. 5. The distributions of grouping statistics learned by iProphet. The negative (red) and positive (blue) distributions for all the five grouping
variable used in iProphet. See Fig. 4B legend for detail. A, Number of replicate spectra, NRS. B, Number of sibling searches, NSS. C, Number of sibling
ions, NSI. D, Number of sibling experiments, NSE. E, Number of sibling modifications, NSM. S. pyogenes data set, all search engine combined.
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entire data set. Not all data sets analyzed by iProphet can
use all models and unneeded models are automatically
disabled. For example, the model for multiple sibling
searches is not useful when only a single search is being
processed and as a result, it is automatically disabled in this
analysis scenario. Each of the iProphet models can also be
manually disabled by the user. The output from iProphet is
further processed using a modified version of Pro-
teinProphet, which produces a protXML file with the protein
level summary of the results.

iProphet is implemented in C

, like PeptideProphet and
ProteinProphet, and is automatically available upon installa-
tion of the TPP software suite. Because it is a part of the TPP,
it works on all three major operating system platforms: Win-
dows, Linux/Unix, and OS X. It works with instruments from all
major instrument vendors as converters from vendor-specific
binary formats to the open XML-based formats (39) of the TPP

are included. Further, all the visualization and quantification
tools of the TPP work seamlessly with iProphet output. The
TPP already has full support for many of the most popular
search engines including Mascot (25), SEQUEST (26), X! Tan-
dem (27), ProbID (40), and SpectraST (41). Beta support exists
for Phenyx (42), Inspect (29), MyriMatch (30), and OMSSA
(31). Therefore, iProphet can likely work with the engine of
choice at most sites.

The iProphet program, as well as all other TPP programs, is
free and open source software. The source code is available in
a publicly accessible source code repository hosted on Source-
Forge. Current users of the TPP need only upgrade to the latest
version to have immediate access to iProphet to process new
and older data sets. For new users, the installation of the TPP is
easy and is available on Windows, Linux, and OS X. Installation
instructions are available at the Seattle Proteome Center web
site: http://www.proteomecenter.org/software.php.

FIG. 6. Comparison between iProphet, PeptideProphet, and Percolator. The number of correct PSMs as a function of FDR obtained using
iProphet (solid blue line), PeptideProphet (green dashes), and Percolator (purple, dash dot), applied to SEQUEST search results. Inset shows
an extended range of FDR values (up to 20%). A, Human data set. B, FFE-LTQ-FT subset of the S. pyogenes data set.

FIG. 7. Overview of the possible TPP workflow. Analysis with iProphet can be performed as an intermediate step between PeptideProphet
and ProteinProphet in a single search analysis or a combined search analysis.
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DISCUSSION

The main task of PeptideProphet and ProteinProphet, and
the new iProphet tool described here is the statistical analysis
of and integration of peptide and protein identifications in
MS/MS-based proteomic data sets. In the last decade, sev-
eral strategies have emerged that address this problem.
Therefore, it should be informative to discuss the methods
employed in this work with respect to other approaches (for
an in-depth discussion on this subject see (37)). First, many
search engines, including Mascot, X! Tandem, and OMSSA,
convert the original search scores into expectation values
(E-values (43)) and report them as confidence scores for in-
dividual PSMs. The steps used to compute E-values essen-
tially represent the conventional p value computation as the
tail probability in the distribution generated from random
matches, with the random distribution estimated under cer-
tain parametric (e.g. Poisson) assumptions (31, 44), via theo-
retical derivation of the tail part of the random distribution (45),
or using empirical fitting (43, 46). An alternative approach,
which falls in the same category of single-spectrum statistical
confidence scores as E-values, is based on the concept of
generating functions (47). The advantage of these scores over
the original search scores is that they are largely invariant
under different scoring methods, allowing a clearer interpre-
tation of goodness of the PSM across different data sets.
However, p values/E-values and other single-spectrum sta-
tistical scores are not sufficient when the analysis involves
simultaneous processing of multiple MS/MS spectra. Thus,
additional modeling is necessary to calculate statistical mea-
sures more suitable for filtering of large collections of MS/MS
database search results, such as FDR(48) and posterior pep-
tide and protein probabilities (37, 49–51).

In shotgun proteomics, the methods for estimating FDR can
be broadly divided into two categories. The simple target-
decoy strategy(52) requires that MS/MS spectra are searched
against a database containing target and decoy sequences
and assumes that matches to decoy peptide sequences and
false matches to target sequences follow the same distribu-
tion (52). The main advantage of this strategy is minimal
distributional assumptions and the ease of implementation. At
the same time, the simple target-decoy strategy does not
directly provide a probability score for individual PSMs or
proteins. Instead, a more elaborate statistical analysis can be
carried out using a mixture model approach (53)—the strategy
implemented in PeptideProphet and its extension iProphet.
These tools calculate the posterior probability for each indi-
vidual PSM as the baseline measure for distinguishing be-
tween true and false identifications. These probabilities are
directly related (33) to another local error rate measure, the
local FDR (sometimes referred to as peptide error probability),
and can be used to estimate FDR for an entire filtered subset
of PSMs (e.g. accepting PSMs with probability greater or
equal than a 0.99 threshold). They can also be taken as input

to the protein level analysis (ProteinProphet), which includes
the calculation of protein level probabilities and FDR estima-
tion. Another important advantage of PeptideProphet is that it
is easily expandable to include additional information about
the peptides being matched. Such types of information in-
clude mass accuracy, peptide separation coordinates (e.g. pI,
retention time), digestion properties (the number of enzymatic
termini expected from the specificity of the protease), and
more. PSMs are rewarded or penalized based on their con-
cordance with the expected values for each of these attri-
butes; the incorporation of this information into the model
further increases the discrimination between correct and in-
correct identifications.

Recent improvements in PeptideProphet tools have sub-
stantially improved its robustness and general applicability.
Although the original implementation of PeptideProphet was
based on unsupervised mixture modeling, the semisupervised
version (33) can incorporate decoys into the model for im-
proved robustness of the modeling in the case of challenging
data sets (e.g. where the model does not converge because of
a very small population of correct PSMs). The parametric
assumptions were relaxed with an introduction of the semipa-
rametric model (32), which made it possible to apply Peptide-
Prophet to a larger number of database search tools. These
advances eliminate most practical disadvantages when com-
pared with the simple decoy-based approach, while providing
a number of significant advantages as described above.

Nevertheless, several important limitations of the existing
PeptideProphet/ProteinProphet tools when applied to very
large data sets have become apparent in recent years. As we
noticed early on (11) one of the most critical challenges is the
inflation of the error rates when going from PSM to unique
peptide sequence to protein level. The NSP adjustment im-
plemented in ProteinProphet was designed to address this
problem, and it works well in the case of small to intermediate
data sets. One of the main aims of the iProphet program
described here is to calculate accurate probabilities at the
level of unique peptide sequences starting with the
PeptideProphet probabilities, which are accurate at the PSM
level. This, in turn, leads to more accurate probabilities and
FDR estimates at the protein level. Inclusion of the five addi-
tional models in iProphet to better reflect the multilevel struc-
ture of shotgun proteomic data also improves the separation
between true and false PSMs, thus increasing the number of
correct identifications. Explicit modeling of each factor (NRS,
NSM, etc) also provides insights into the nature of the sample
and ensures robustness against different experimental strat-
egies and setups. Another important challenge—dealing with
shared peptides and creation of proteins groups for final
presentation (54)—continues to be handled by Protein-
Prophet and thus is not discussed here in detail.

In the absence of gold standard data sets of sufficiently
large size and complexity, the assessment of the accuracy of
computed probabilities is based on the comparison of prob-
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ability-based and decoy count based FDR estimates. How-
ever, the decoy-based FDR estimates vary depending on the
details of the target-decoy database search, e.g. two separate
searches against the target and the decoy database or a
single search against a concatenated target plus decoy da-
tabase (55–57) (for a recent review see (37)). Furthermore,
none of the existing decoy database creation methods cap-
ture all significant sources of false identifications (e.g. false
positives arising because of sequence homology(49)). Thus,
although the trend is clear in that iProphet improves the
accuracy of peptide and protein-level estimates compared
with the conventional PeptideProphet/ProteinProphet, one
should not expect a perfect agreement between the proba-
bility-based and decoy-based FDR estimates.

The analysis presented here using two diverse data sets
demonstrated that the use of iProphet provides an increased
number of correct identifications at the same FDR, and more
accurate probabilities at all levels. This has been verified on
many other data sets processed as a part of the PeptideAtlas
project (58, 59). This project aims to collect raw MS/MS data
from many sources and experiments, process them through
a single data analysis pipeline, and present the results as a
compendium of all peptides and proteins observed in the
publicly available data. The iProphet program has become a
crucial component of the PeptideAtlas pipeline and serves
to further expand the coverage and quality of the database
(3).

The iProphet’s multilevel modeling framework allows easy
integration of multiple database search tools. A multisearch
strategy is now fairly easy to apply given the availability of fast
computers and a growing number of freely available open-
source database search programs. However, despite previ-
ous efforts exploring this strategy (35, 60–62), it has not yet
been widely used in practice. Integration of the output from
multiple search engines into a single summary statement has
been cumbersome and time-consuming, in part because of
different output formats generated by each search engine.
With the availability of iProphet, these multiple search results
may be easily combined into one summary file, leveraging the
strengths of different search engines to yield a significantly
higher number of identifications at a constant FDR. Given
iProphet’s implementation as a part of the commonly used
TPP pipeline, it should make the promising multi-search anal-
ysis option available to a large number of users.
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